Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Zinc(II) and cadmium(II) chloride complexes with 4,4'-bi-1,2,4-triazole

Evgen V. Govor, Andrey B. Lysenko and Konstantin V. Domasevitch*

Inorganic Chemistry Department, Kiev University, Volodimirska Street 64, Kiev 01033, Ukraine Correspondence e-mail: dk@univ.kiev.ua

Received 21 February 2008 Accepted 1 April 2008 Online 9 April 2008

New coordination compounds with the 4,4'-bi-1,2,4-triazole ligand (btr), namely tetraaqua- $2\kappa^4 O$ -di- μ_2 -4,4'-bi-1,2,4-tri azole-1: $2\kappa^2 N^1$: N^1 ;2: $3\kappa^2 N^1$: N^1 '-hexachlorido- $1\kappa^3 Cl, 3\kappa^3 Cl$ -trizinc(II), $[Zn_3Cl_6(C_4H_4N_6)_2(H_2O)_4]$, (I), and poly[cadmium(II)- μ_2 -4,4'-bi-1,2,4-triazole- $\kappa^2 N^1$: N^2 -di- μ_2 -chlorido], [CdCl₂(C₄H₄- N_6]_n, (II), reveal an unprecedented molecular zwitterionic structure for (I) and a polymeric two-dimensional layer structure for (II). Differences between these products, which involve the formation of either charge-separated chlorometallate/aquametal fragments or complementary organic and inorganic bridges, are attributable to the hardness-softness characters of the metal cations. In (I), two $N^1, N^{1'}$ -bidentate btr molecules connect one [Zn(H₂O)₄]²⁺ cation and two [ZnCl₃]⁻ anions into a linear trizinc motif (the Zn atom of the cation occupies a centre of inversion in an N2O4 coordination octahedron, whereas the Zn atom of the anion possesses a distorted tetrahedral Cl₃N environment). In (II), the distorted vertex-sharing CdCl₄N₂ octahedra are linked into binuclear $[Cd_2(\mu_2-Cl)(\mu_2-btr)_2]^{3+}$ fragments by unprecedented $N^1:N^2$ bidentate btr double bridges and bridging chloride ligands. while the additional chloride anions are also bridging, providing further propagation of the fragments into a twodimensional network [Cd-Cl = 2.5869 (2)-2.6248 (7) Å].

Comment

The co-operative assembly of small inorganic bridging anions (*e.g.* halogenides), short organic *N*-donor bridges (*e.g.* 1,2,4-triazole derivatives, trz) and transition metal cations provides many possibilities for the development of organic–inorganic frameworks. In a series of Cd^{II} and Zn^{II} 1,2,4-triazolates, the combined role of the anionic components is to connect the metal clusters and to participate in the framework connectivity (Ouellette *et al.*, 2007), while utilization of halogenide anions in ZnF₂-trz (Su *et al.*, 2004) and CdCl₂-trz (Yi *et al.*, 2004) leads to hollow tubular architectures and materials with luminescent properties. The use of the bitopic ligand 4,4'-bi-

1,2,4-triazole (btr) instead of simple monofunctional triazole ligands involves the rational propagation of the characteristic nodal units into the lattice by means of the doubled triazole functionalities. In particular, such a combination of bitopic triazole and chloride bridges contributes to the formation of eight-connected coordination frameworks involving linear tricopper(II) secondary building blocks (Lysenko *et al.*, 2007). The combined behaviour of the btr molecule and Cl⁻, as a coligand pair, is still unexplored. We wished to correlate this behaviour with the hardness–softness character of the metal cation. To this end, we have examined Zn^{II}/Cd^{II} –btr–Cl⁻ systems and we report here the structures of two new complexes, $[Zn(H_2O)_4(\mu_2-btr)_2(ZnCl_3)_2]$, (I), and $[Cd(\mu_2-Cl)_2(\mu_2-btr)]_n$, (II).

The molecular trinuclear coordination compound, (I) (Fig. 1), is realized by consecutive interconnection of the Zn ions by two $N^1, N^{1'}$ -bidentate btr bridges [Zn2-N4 = 2.0545 (18) Å and Zn1-N1 = 2.0930 (17) Å], and involves a cationic part (Zn1) and two outer anionic centres (Zn2). The central Zn1 atom of the cationic fragment lies on an inversion centre and possesses an octahedral N2O4 environment involving two N atoms from btr molecules in trans positions and four aqua ligands in the basal plane [Zn1-O = 2.136 (2)] and 2.1091 (17) Å], as has been observed for zwitterionic Znpyridine complexes, e.g. $Zn(H_2O)_4$ (pyridine-3-sulfonate- κN)₂ (Walsh & Hathaway, 1980). The terminal Zn2 atoms of the anionic fragments display a distorted tetrahedral Cl₃N environment [Zn2-Cl = 2.2305 (7)-2.2658 (7) Å], which is similar to that observed for the anion in $(LH)[Zn(L)Cl_3]$ (L = quinoline; Wang et al., 2001). A few examples of chargeseparated aquazinc(II)/trichlorozincate(II) arrays have been provided by organic N-donors such as urotropine (Mak &

Figure 1

The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x, -y, -z; (v) x - 1, y, z.]

Figure 2

A fragment of the structure of (I), showing the packing mode of the long metal-organic molecules and their interconnection by $O-H\cdots CI$ hydrogen bonds. $O2-H4W\cdots N2^{v}$ hydrogen bonding expands the structure in the *a* direction, which is orthogonal to the plane of the drawing. [Symmetry codes: (ii) -x, -y + 1, -z; (v) x - 1, y, z; (vii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$]

Huang, 1987) and 1,3,7-trimethyl-3,7-dihydro-1*H*-purine-2,6dione (Jin *et al.*, 2005), but the zwitterionic trinuclear molecule of (I) has no counterpart in the chemistry of zinc(II) chloride and nonchelating nitrogen ligands.

The noncoordinated N atoms of the btr molecules of (I) participate in intermolecular $O-H\cdots N$ hydrogen bonds, one type of which, *viz.* $H4W\cdots N2^{v}$ (see Table 2 for details), connects the molecular complexes into chains. In terms of the graph-set formalism (Etter *et al.*, 1990), pairs of such intermolecular interactions lead to ten-membered $R_2^2(10)$ rings translated parallel to the *a* axis (Fig. 1), while pairs of somewhat stronger H3 $W\cdots N5^{iv}$ interactions link the molecules into layers parallel to the *bc* plane. Thus, the set of $O-H\cdots N$ bonds leads to a three-dimensional array. The role of $O-H\cdots Cl$ hydrogen bonds is also important. These intermolecular interactions generate a two-dimensional packing pattern, parallel to ($\overline{102}$) (Fig. 2), employing four of the six

The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, y, $\frac{3}{2} - z$; (ii) 1 - x, -y, 2 - z.]

available Cl atoms as hydrogen-bond acceptors. Pairs of weaker C-H···Cl hydrogen bonds (Desiraju & Steiner, 1999) are observed between molecules related by inversion and, in total, the terminal [ZnCl₃]⁻ units are involved in four hydrogen bonds.

The less polarizing Cd^{2+} cation, as a weaker Lewis acid, forces the Cl^- anions to behave as co-bridging linkers, resulting in the formation of the more complicated polymeric architecture observed in the structure of (II). The N₂Cl₄ coordination environment of the Cd1 ion is realized as a distorted octahedron comprising four bonds with Cl⁻ anions [Cd1-Cl = 2.5869 (2)–2.6248 (7) Å], the lengths of which are typical of compounds with the same coordination environment (Villa *et al.*, 1971). The coordination is completed by N atoms of the organic ligand located in *cis* positions [Cd1-N = 2.386 (2) and 2.382 (2) Å]. Such a configuration of a CdN₂Cl₄ octahedron is uncommon among complexes with nonchelating *N*-donor ligands [*e.g.* Cd(piperazine)Cl₂; Vaidhyanathan *et al.*, 2003] (Fig. 3).

Both organic and inorganic ligands bridge the metal ions of (II) and contribute to the overall connectivity as complementary linkers. Thus, pairs of Cd ions are bridged by Cl2 $[Cd1-Cl2-Cd1^{i} = 98.25 (1)^{\circ};$ symmetry code: (i) -x + 1, y, $-z + \frac{3}{2}$ and two N^1, N^2 -bidentate btr ligands similar to the pattern observed in $[{Cd_3(\mu_2-L)_4(\mu_2-Cl)_2}(\mu_2-NCS)_2(NCS)_2]$. $2H_2O$ (L = 4-amino-3,5-dimethyltriazole; Yi *et al.*, 2004), yielding the primary dinuclear unit of the structure. This coordination mode of the btr ligand is unprecedented; it behaves as a monofunctional triazole, leaving the second available trz ring noncoordinated. Interconnection of the dinuclear units occurs entirely via the Cl⁻ ligands, which function as either single or double bridges between the Cd ions. Two Cl3 atoms act as double μ_2 -bridges between the $[Cd_2(\mu_2-btr)_2(\mu_2-Cl2)]^{3+}$ binuclear fragments [Cd1-Cl3- $Cd1^{ii} = 87.59 (2)^{\circ}$; symmetry code: (ii) -x + 1, -y, -z + 2] and assemble them into zigzag $[Cd_2(\mu_2-btr)_2(\mu_2-Cl2)(\mu_2-Cl3)_2]_n^{n+1}$ chains running parallel to the c axis, with a $Cd1 \cdots Cd1^{ii}$ separation of 3.6210 (4) Å. The chains are connected into a two-dimensional coordination network parallel to the bc plane by means of Cl1 anions, which lie on inversion centres and supply unusual linear interlinks between the Cd ions $[Cd1 \cdots Cd1^{vi} = 5.1737 (5) \text{ Å}; \text{ symmetry code: (vi) } -x + 1,$

Figure 4

The two-dimensional network in the structure of (II), which is supported by a combination of inorganic (bold lines) and organic bridges. H atoms and part of the noncoordinated trz groups have been omitted for clarity. N atoms are shaded grey. [Symmetry codes: (i) 1 - x, y, $\frac{3}{2} - z$; (ii) 1 - x, -y, 2 - z; (vi) -x + 1, -y + 1, -z + 2.]

Figure 5

The packing of successive coordination layers in the structure of (II), showing interdigitation of the noncoordinated trz groups (projection on to the *ac* plane). Dashed lines indicate weak $C-H \cdots N$ hydrogen bonds. [Symmetry codes: (iii) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 2$; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.]

-y + 1, -z + 2]; Cl2 atoms lie on twofold axes). This geometry at a bridging Cl⁻ anion is rare; it has been observed for a few anionic complexes, such as (MeNH₃)₂[CdCl₄] (Chapuis *et al.*, 1975). The successive coordination sheets are separated by 10.39 Å and their noncoordinated trz termini are interdigitated, supporting very weak interlayer C-H···N hydrogen bonding (Table 4 and Fig. 5).

In conclusion, we have demonstrated how the structure of MCl_2 -btr coordination compounds depends upon the Lewis

Experimental

All materials were of reagent grade and were used as received. The btr ligand was prepared according to the reported procedure of Bartlett & Humphrey (1967). The title coordination compounds, (I) and (II), were synthesized in a similar manner. Evaporation of mixed aqueous solutions (3 ml) of CdCl₂·H₂O (0.0402 g, 0.2 mmol) and btr (0.0136 g, 0.1 mmol) in a desiccator over H₂SO₄ for a few days afforded colourless prisms of (II) (yield 84%). Compound (I) was prepared in an analogous manner in 65% yield.

Compound (I)

Crystal data

 $\begin{bmatrix} Zn_3Cl_6(C_4H_4N_6)_2(H_2O)_4 \end{bmatrix}$ $M_r = 753.14$ Monoclinic, $P2_1/c$ a = 6.8300 (5) Å b = 14.6428 (14) Å c = 12.5650 (9) Å $\beta = 104.903$ (9)°

Data collection

Stoe IPDS diffractometer Absorption correction: part of the refinement model (ΔF) (*DIFABS*; Walker & Stuart, 1983) $T_{\min} = 0.424, T_{\max} = 0.536$ $V = 1214.36 (17) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 3.64 \text{ mm}^{-1}$ T = 213 (2) K $0.23 \times 0.18 \times 0.17 \text{ mm}$

10447 measured reflections 2849 independent reflections 2157 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.040$

Table 1

Selected geometric parameters (Å, °) for (I).

Zn1-N1 Zn1-O2 Zn1-O1 Zn2-N4	2.0930 (17) 2.1091 (17) 2.136 (2) 2.0545 (18)	Zn2-Cl1 Zn2-Cl2 Zn2-Cl3	2.2305 (7) 2.2589 (7) 2.2658 (7)
N1-Zn1-O2 N1-Zn1-O1 O2-Zn1-O1 N4-Zn2-Cl1	87.67 (7) 92.25 (7) 88.31 (8) 116.35 (6)	N4-Zn2-Cl2 Cl1-Zn2-Cl2 N4-Zn2-Cl3 Cl1-Zn2-Cl3	103.40 (6) 111.79 (3) 98.71 (6) 114.99 (3)

Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1W\cdots Cl1^{ii}$	0.80 (2)	2.51 (2)	3.294 (2)	167 (3)
$O1 - H2W \cdot \cdot \cdot Cl2^{iii}$	0.79 (2)	2.55 (2)	3.318 (2)	163 (3)
$O2-H3W \cdot \cdot \cdot N5^{iv}$	0.81(2)	2.00(2)	2.809 (3)	174 (3)
$O2-H4W \cdot \cdot \cdot N2^{v}$	0.80(2)	2.31 (3)	2.976 (3)	142 (4)
$C2-H2\cdot\cdot\cdot Cl3^{vi}$	0.94	2.62	3.445 (2)	147
$C3\!-\!H3\!\cdots\!Cl2^{vi}$	0.94	2.64	3.493 (3)	151

Symmetry codes: (ii) -x, -y + 1, -z; (iii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) x - 1, y, z; (vi) -x + 1, -y + 1, -z.

metal-organic compounds

Table 3

Selected geometric parameters (Å, °) for (II).

Cd1-N1	2.382 (2)	Cd1-Cl3 ⁱⁱ	2.6154 (7)
Cd1-N2 ⁱ	2.386 (2)	Cd1-Cl3	2.6168 (8)
Cd1-Cl1	2.5869 (2)	Cd1-Cl2	2.6248 (7)
$N1-Cd1-N2^{i}$	83.24 (9)	Cl3 ⁱⁱ -Cd1-Cl3	92.41 (2)
N1-Cd1-Cl1	83.69 (6)	N1-Cd1-Cl2	85.56 (6)
N1-Cd1-Cl3 ⁱⁱ	174.19 (7)	Cl1-Cd1-Cl2	165.422 (19)
N1-Cd1-Cl3	91.18 (6)	Cl3-Cd1-Cl2	99.96 (2)
N2 ⁱ -Cd1-Cl3	171.48 (7)	Cd1-Cl2-Cd1 ⁱ	98.25 (4)
Cl1-Cd1-Cl3	90.10 (2)	Cd1 ⁱⁱ -Cl3-Cd1	87.59 (2)

Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) -x + 1, -y, -z + 2.

Table 4

Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \cdots N5^{iii}$ $C2 - H2 \cdots N5^{iv}$ $C4 - H4 - C12^{v}$	0.94	2.47	3.274 (4)	144
	0.94	2.57	3.193 (4)	124

Symmetry codes: (iii) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 2$; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 2$.

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ H atoms treated by a mixture of
independent and constrained
refinement8 = 0.89refinement2849 reflections $\Delta \rho_{max} = 0.76$ e Å⁻³
 $\Delta \rho_{min} = -0.63$ e Å⁻³6 restraints $\Delta \rho_{min} = -0.63$ e Å⁻³

Compound (II)

Crystal data

 $\begin{bmatrix} CdCl_2(C_4H_4N_6) \end{bmatrix} \\ M_r = 319.43 \\ Monoclinic, C2/c \\ a = 21.789 (2) Å \\ b = 6.3833 (4) Å \\ c = 13.8073 (13) Å \\ \beta = 107.468 (11)^{\circ} \end{bmatrix}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) T_{min} = 0.528, T_{max} = 0.610

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.069$ S = 0.992179 reflections $\Delta \rho_{\rm min} = -0.63 \text{ e} \text{ Å}^{-3}$

V = 1831.8 (3) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 2.93 \text{ mm}^{-1}$
T = 213 (2) K
$0.21 \times 0.20 \times 0.17 \text{ mm}$

6891 measured reflections 2179 independent reflections 1863 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$

120 parameters H-atom parameters constrained $\Delta \rho_{max} = 2.76 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.67 \text{ e} \text{ Å}^{-3}$ For (I), O-bound H atoms were found in intermediate Fourier maps and were refined fully with isotropic displacement parameters and with restraints for the O–H bond lengths [O-H = 0.79 (2)-0.81 (2) Å]. For both structures, C-bound H atoms were treated as riding in geometrically idealized positions, with C–H = 0.94 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *IPDS Software* (Stoe & Cie, 2000) for (I); *SMART-NT* (Bruker, 1998) for (II). Cell refinement: *IPDS Software* for (I); *SAINT-NT* (Bruker, 1999) for (II). Data reduction: *IPDS Software* for (I); *SAINT-NT* for (II). For both compounds, program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *WinGX* (Version 1.70.01; Farrugia, 1999).

EVG acknowledges support from the stipendial programme 'Zavtra.UA' of the Victor Pinchuk Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ3126). Services for accessing these data are described at the back of the journal.

References

- Bartlett, R. K. & Humphrey, I. R. (1967). J. Chem. Soc. C, 17, 1664-1666.
- Brandenburg, K. (1999). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SMART-NT. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT-NT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chapuis, G., Arend, H. & Kind, R. (1975). *Phys. Status Solidi A*, **31**, 449–454. Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*, pp. 40–107,
- 246–252. Oxford University Press. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256– 262
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jin, Z.-M., Li, L., Hu, M.-L., Su, H. & Tong, C.-X. (2005). Acta Cryst. E61, m1849–m1851.
- Lysenko, A. B., Govor, E. V. & Domasevitch, K. V. (2007). Inorg. Chim. Acta, 360, 55–60.
- Mak, T. C. W. & Huang, S.-H. (1987). Polyhedron, 6, 1111-1114.
- Ouellette, W., Hudson, B. S. & Zubieta, J. (2007). *Inorg. Chem.* 46, 4887–4904. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
- Su, C.-Y., Goforth, A. M., Smith, M. D., Pellechia, P. J. & zur Loye, H.-C. (2004). J. Am. Chem. Soc. 126, 3576–3586.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2003). Eur. J. Inorg. Chem. pp. 1675–1680.
- Villa, A. C., Coghi, L., Mangia, A., Nardelli, M. & Pelizzi, G. (1971). J. Cryst. Mol. Struct. 1, 291–295.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Walsh, B. & Hathaway, B. J. (1980). J. Chem. Soc. Dalton Trans. pp. 681–690.
 Wang, W.-G., Zhang, X.-F., Huang, D.-G., Zhu, H.-P., Chen, C.-N. & Liu, Q.-T. (2001). Acta Cryst. E57, m561–m563.
- Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z. & Jiang, S.-P. Y. (2004). Inorg. Chem. 43, 33–43.